PSF-BI -P1

VANCS SERIES - PSF

(FRP) EFFLUENT PUMPS

SPECIFICATIONS

FEATURES

- 1. Enclosed, FRP (Fiberglass Reinforced Plastic), impeller provides for high head pumping of effluent or water.
- 2. Double inside mechanical seals with silicon carbide faces, running in an oil filled chamber and further protected by a lip seal, provides for the most durable seal design available.
- 2. Highly efficient, continuous duty, air filled, copper wound motor with class E, insulation minimizes the cost of operation.
- 4. Built in thermal & amperage sensing, protector prevents motor failure due to overloading, 2. Chemical spill containment. single phasing (in three phase units), or accidental run -dry conditions.

- 5. Double shielded, permanently lubricated, high temperature C3 ball bearings rated for a B-10 life of 60,000 hours, extend operational life.
- 6. Utilization of application appropriate FRP & stainless steel components increases corrosion resistance in a wide variety of applications.

APPLICATIONS

- 1. Residential, commercial, effluent, wastewater and site drainage.
- 3. Decorative waterfalls, fountains and fish ponds.
- 4. Raw water supply from rivers or lakes.

■ SPECIFICATIONS

Discharge Size Horsepower Range Performance Range Capacity Head

Maximum water temperature Materials of Construction

Casing (upper)/(lower)

Impeller Shaft

Motor Frame

Fasteners

Mechanical Seal Elastomers

Impeller Type Solids Handling Capability

Bearings

Motor Nomenclature Type, Speed, Hz. Voltage, Phase

Insulation

Accessories

Operational Mode

■ STANDARD

2" ~ 3" N.P.T. (50 ~ 80mm) $1/3 \sim 5$ Hp. (.25 ~ 3.7 kW) $6.6 \sim 203.4 \text{ G.P.M.} (.03 \sim .85 \text{ m}^3/\text{min})$ 16.4 ~ 111.5 Ft. (5.0 ~ 33.99 m) 104° F. (40° C.)

FRP (ABS + G20) / ABS FRP (ABS + G20) 403 Stainless Steel 304 Stainless Steel 304 Stainless Steel

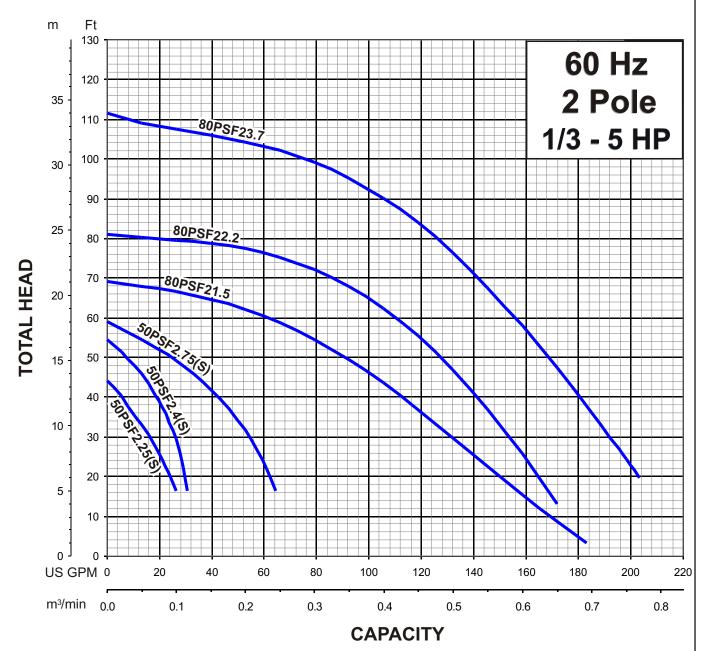
Silicon Carbide NBR (Nitril Buna Rubber)

Enclosed, Multi-vane .32 ~.51" (8~13 mm)

Pre-lubricated, Double Shielded

Air Filled, 3600 Rpm, 60 Hz. 115 or 230 V.,1 Phase., 208-220, 230, 460, or 575 V. 3 Phase Class E

Submersible Power Cable 32' (10 m)

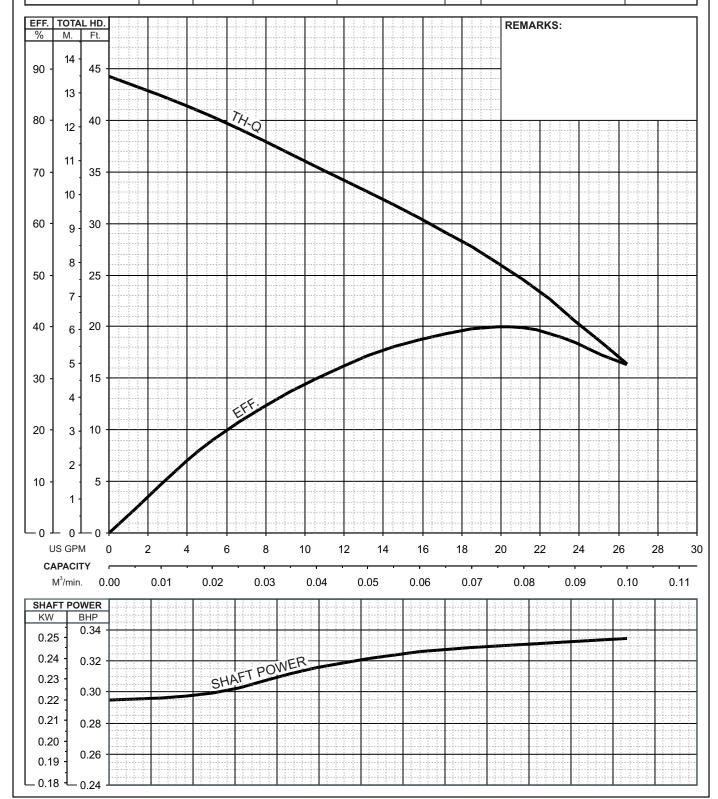

OPTIONS

Length as Required Model A(Automatic), Model AW (Automatic Alternating) TOK (FRP) Slide rail system

VANCS - SERIES - PSF (FRP) EFFLUENT PUMPS

PERFORMANCE RANGE

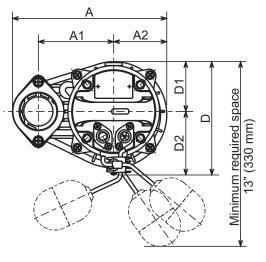
PERFORMANCE RANGE


ug. 16 60-PC-PSF-02

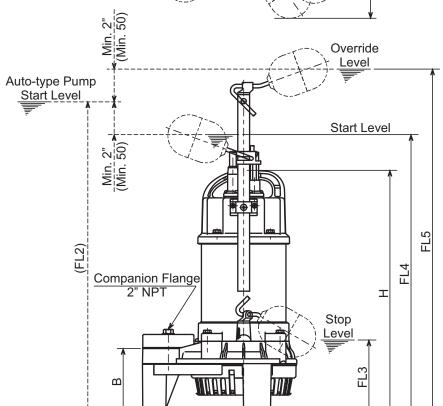
VANCS - SERIES - PSF (FRP) EFFLUENT PUMPS

Performance Curve

	MODEL		BORE	HP	KW	RPM	SOLIDS DI	Α	LIQUID	SG.	VISC	OSITY	TEMP.
	50PSF(A/W)2.25	5-63	2" / 50mm	0.34	0.25	3400	0.315" / 8m	m	Water		1.12	3 cSt.	60°F
	PUMP TYPE		PHASE	VOL	TAGE	AM	PERAGE	HZ	STARTING METHOD		INS. C	CLASS	
	Effluent Pump	ρ	3	208-2	20/460	1.65	-1.6 / 0.75	60	Direct On	Line		I	Ξ
	CURVE No.	DATE	PHASE	VOL	TAGE	AM	PERAGE	HZ	STARTING M	IETHC	D	INS. C	LASS
Г	-	-	-		-		-	-	_				-



ov. 2017 F-DM-PSF-05



VANCS-SERIES - PSF (FRP) EFFLUENT PUMPS

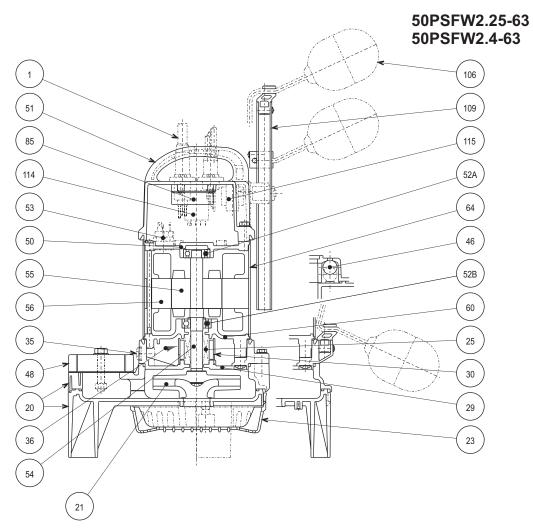
DIMENSIONS

50PSFW2.25S-63 50PSFW2.25-63 50PSFW2.4S-63 50PSFW2.4-63 50PSFW2.75S-63 50PSFW2.75-63

DIMENSIONS:USCS (Inch)

Model	HP	NOM.		Pump & Motor						Stop	Start	Override	Wt.	
		SIZE	Α	A1	A2	В	D	D1	D2	Н	FL3	Max.FL4	Max.FL5	(lbs.)
50PSFW2.25S-63	1/3	2"	9 5/16	4 1/2	3 3/16	4	6 13/16	3	3 13/16	14 3/4	4 1/2	21 7/8	25 7/8	17.4
50PSFW2.25-63	1/3	2"	9 5/16	4 1/2	3 3/16	4	6 13/16	3	3 13/16	14 5/16	4 1/2	21 1/2	25 3/8	15.2
50PSFW2.4S-63	1/2	2"	9 5/16	4 1/2	3 3/16	4	6 13/16	3	3 13/16	14 3/4	4 1/2	21 7/8	25 7/8	17.4
50PSFW2.4-63	1/2	2"	9 5/16	4 1/2	3 3/16	4	6 13/16	3	3 13/16	14 3/4	4 1/2	21 7/8	25 7/8	17.2
50PSFW2.75S-63	1	2"	9 5/16	4 1/2	3 3/16	4	6 13/16	3	3 13/16	15 1/2	4 1/2	22 3/4	26 5/8	21.4
50PSFW2.75-63	1	2"	9 5/16	4 1/2	3 3/16	4	6 13/16	3	3 13/16	15 1/4	4 1/2	22 1/2	26 3/8	20.0

DIMENSIONS: METRIC (mm)


kW	NOM.	Pump & Motor							Stop	Start	Override	Wt.	
	SIZE	Α	A1	A2	В	D	D1	D2	Н	FL3	Max.FL4	Max.FL5	(kg)
0.25	50	236	115	81	102	173	76	97	374	115	557	657	7.9
0.25	50	236	115	81	102	173	76	97	363	115	546	646	6.9
0.40	50	236	115	81	102	173	76	97	374	115	557	657	7.9
0.40	50	236	115	81	102	173	76	97	374	115	557	657	7.8
0.75	50	236	115	81	102	173	76	97	394	115	577	677	9.7
0.75	50	236	115	81	102	173	76	97	388	115	571	671	9.1
	0.25 0.25 0.40 0.40 0.75	SIZE 0.25 50 0.25 50 0.40 50 0.40 50 0.75 50	size A 0.25 50 236 0.25 50 236 0.40 50 236 0.40 50 236 0.75 50 236	SIZE A A1 0.25 50 236 115 0.25 50 236 115 0.40 50 236 115 0.40 50 236 115 0.75 50 236 115	SIZE A A1 A2 0.25 50 236 115 81 0.25 50 236 115 81 0.40 50 236 115 81 0.40 50 236 115 81 0.75 50 236 115 81	SIZE A A1 A2 B 0.25 50 236 115 81 102 0.25 50 236 115 81 102 0.40 50 236 115 81 102 0.40 50 236 115 81 102 0.75 50 236 115 81 102	SIZE A A1 A2 B D 0.25 50 236 115 81 102 173 0.25 50 236 115 81 102 173 0.40 50 236 115 81 102 173 0.40 50 236 115 81 102 173 0.75 50 236 115 81 102 173	SIZE A A1 A2 B D D1 0.25 50 236 115 81 102 173 76 0.25 50 236 115 81 102 173 76 0.40 50 236 115 81 102 173 76 0.40 50 236 115 81 102 173 76 0.75 50 236 115 81 102 173 76	SIZE A A1 A2 B D D1 D2 0.25 50 236 115 81 102 173 76 97 0.25 50 236 115 81 102 173 76 97 0.40 50 236 115 81 102 173 76 97 0.40 50 236 115 81 102 173 76 97 0.75 50 236 115 81 102 173 76 97	SIZE A A1 A2 B D D1 D2 H 0.25 50 236 115 81 102 173 76 97 374 0.25 50 236 115 81 102 173 76 97 363 0.40 50 236 115 81 102 173 76 97 374 0.40 50 236 115 81 102 173 76 97 374 0.75 50 236 115 81 102 173 76 97 394	SIZE A A1 A2 B D D1 D2 H FL3 0.25 50 236 115 81 102 173 76 97 374 115 0.25 50 236 115 81 102 173 76 97 363 115 0.40 50 236 115 81 102 173 76 97 374 115 0.40 50 236 115 81 102 173 76 97 374 115 0.75 50 236 115 81 102 173 76 97 374 115 0.75 50 236 115 81 102 173 76 97 394 115	SIZE A A1 A2 B D D1 D2 H FL3 Max.FL4 0.25 50 236 115 81 102 173 76 97 374 115 557 0.25 50 236 115 81 102 173 76 97 363 115 546 0.40 50 236 115 81 102 173 76 97 374 115 557 0.40 50 236 115 81 102 173 76 97 374 115 557 0.75 50 236 115 81 102 173 76 97 374 115 557 0.75 50 236 115 81 102 173 76 97 394 115 577	SIZE A A1 A2 B D D1 D2 H FL3 Max.FL4 Max.FL5 0.25 50 236 115 81 102 173 76 97 374 115 557 657 0.25 50 236 115 81 102 173 76 97 363 115 546 646 0.40 50 236 115 81 102 173 76 97 374 115 557 657 0.40 50 236 115 81 102 173 76 97 374 115 557 657 0.75 50 236 115 81 102 173 76 97 374 115 557 657 0.75 50 236 115 81 102 173 76 97 394 115 577 677

Dot. 12 F-SEC-PSF-12

VANCS - SERIES - PSF (FRP) EFFLUENT PUMPS

SECTIONAL VIEW

PART#	DESCRIPTION	MAIN MATERIAL / NOTE	RELATED ASTM, AISI CODE	RELATED EN CODE	QTY
1	Power Cable	PVC Sheath AWG16/4-32ft			1
20	Pump Casing	ABS Plastic w/GF20			1
21	Impeller	PPO Plastic w/GF20			1
23	Suction Strainer	ABS Plastic			1
25	Mechanical Seal	Silicon Carbide / W-14HL			1
29	Oil Casing	PPS Plastic w/(GF+MD)50			1
30	Oil Lifter	PBT Plastic			1
35	Oil Plug	Stainless Steel	S 30400	1.4301	1
36	Lubricant	White Mineral Oil ISO VG32			
46	Air Valve	Glass Ball			1
48	Companion Flange	PBT Plastic w/GF30 / NPT 2"			1
50	Motor Bracket	Aluminum Alloy Die Casting	B85 383.0	EN 1706 AC-46100	1
51	Motor Head Cover	PPS Plastic w/(GF+MD)50			1
52A	Upper Bearing	#6201ZZC3			1
52B	Lower Bearing	#6202ZZC3			1
53	Motor Protector				1
54	Shaft	Stainless Steel	S 30400	1.4301	1
55	Rotor				1
56	Stator				1
60	Bearing Housing	Aluminum Alloy Die Casting	B85 383.0	EN 1706 AC-46100	1
64	Motor Housing	Stainless Steel	S 30400	1.4301	1
85	Relay Unit				1
106	Float Set	ABS Plastic			3
109	Float Support Pipe	PVC			1
114	Power Relay				1
115	Transformer				1

Oct. 13 60-SS-PSF-01

VANCS - SERIES - PSF (FRP) EFFLUENT PUMPS

SAMPLE SPECIFICATIONS

	<u> </u>		DIECHICATIONS
1. SCOPE OF SUPPLY -			
Furnish and install TSURUMI, VA capable of deliveringG designed to pump waste water, s damage during operation. The p exceed the motor rated output th discharge size shall beinch,	SPM(m³/min) atsewage or effluent containing _ sump(s) shall be designed so tha proughout the entire operating ra	Feet(m) TDH. inch (mm) diam at the shaft power required	The pump(s) shall be neter solids without (BHP)/(kW) shall not
2. MATERIALS OF CONSTR	RUCTION -		
Construction of major parts of the intermediate brackets shall be m protective coating shall not be re steel mating anchors integrally companion flange. Impellers shamotor shaft shall be machined to relief valve.	anufactured from recyclable, appopulation All exposed fasteners sast into the mating part. All unitiall be of the multi-vane, enclosed	plication appropriate resins thall be stainless steel and its shall be furnished with a design and shall be slip fire.	s. The need for a shall have stainless NPT discharge t to the shaft. The
3. MECHANICAL SEAL -			
All units shall be furnished with a running in a separate oil filled chatop mechanical seal, (down to or electrical power. Units shall have Stainless steel.	amber. Units shall be fitted with ne third of the standard oil level).	a device that shall provide The device shall not cons	positive lubrication of sume any additional
4. MOTOR-			
The pump motor(s) shall be	or(s) shall be rated at full arts per hour. Motor(s) shall be a ge protection. Motor shaft shall temperature ball bearings, with all be single row, double shielded I or aluminum die casting. Moto	load amps. Motor(s) shall air filled, copper wound, clabe 403 stainless steel and a B-10 life rating at best ef l, C3, deep groove type bal r housing shall be 304 stain	have a 1.15 service as E insulated with shall be supported by ficiency point of labelings. Bearing nless steel. Motors
5. POWER CABLE AND CAI	BLE ENTRANCE -		
The pump power cable shall be s built in strain relief, a one piece, cable entrance assembly shall co Capillary wicking should the pow	three way mechanical compresontain an anti-wicking block to el	sion seal with a fatigue red liminate water incursion in	ducing cable boot. The